
An Open Teleconference Toolkit for Robotics

Stefano Ditrani1, Fabrizio Caccavale1, Anara Sandygulova2 and Mauro Dragone2

1 Department of Engineering, University of Basilicata, Potenza, Italy
(E-mails: ditranistefano@gmail.com, fabrizio.caccavale@unibas.it)

2 School of Computer Science and Informatics, University College Dublin (UCD), Ireland
(E-mails: anara.sandygulova@ucdconnect.ie, mauro.dragone@ucd.ie)

Abstract - This paper illustrates a new, open source toolkit
enabling the seamless integration between robots and
popular Internet-based teleconference systems. The toolkit
has been designed to leverage a number of standards and
to be as open and extensible as possible. This paper
describes the rationale for the design of the new toolkit,
and illustrates its implementation and its application to
two popular robot platforms.

Keywords - Robotic toolkit, remotely operated robots,
robotic telepresence.

1. Introduction
Many robot applications combining cheap robotic devices
with popular Internet-based teleconference systems, such
as Skype and Google Talk, have emerged in recent years.
Use cases vary from enabling users to call and remotely
operate their toy robot to check their own homes while
they are away [1], to more sophisticated tele-care robot
systems [2] that can be used remotely by people to set-up
video calls to their loved ones (as exemplified in Fig 1).
At the same time, progress in standardization of robotic
software systems, such as the one pursued by the popular
robotic operating system (ROS) initiative [3], opens up
new opportunities for their successful integration with
mainstream teleconference systems. Current software
solutions in robotics are often of a component-based
software engineering genre and provide a number of
mechanisms and methodologies that can be used for the
design, development and the execution of modular system
architectures in terms of loosely coupled and potentially
distributed components.
Contrary to past efforts, which have been tied to particular
teleconference systems, specific robot frameworks and/or
specific applications, we have designed an highly modular,
and thus open, extensible and portable toolkit. We focused
on supporting a number of different use cases, considering,
for instance, both calls initiated by the robot and calls
initiated by human users. In addition, we chose a number
of standards and mainstream software engineering
techniques in order to produce an easy to use and
multi-platform toolkit.
The remainder of the paper is organized in the following
manner: Section 2 provides an overview of both emerging
teleconference and robotic standards, and discusses some
of the related work. Section 3 presents the design and the
implementation of our toolkit. Section 4 illustrates its use
applied to two representative robotic platforms, namely, a
Turtlebot robot driven by ROS software, and a Nao robot.
For both platforms, we have used our toolkit to implement

a number of illustrative applications compatible with
Google Talk.
Finally, Section 5 summarizes the contributions of this
paper and points to some directions to be explored in
futureresearch.

Fig. 1. Robots integrated with an Internet-based
teleconference system

2. Background and Related Work

2.1 Teleconference technologies
Many instant messaging (IM) and Voice over IP (Voice
over Internet Protocol) technologies exist today, among
the most famous: Skype and Google Talk.
Skype is certainly the most familiar application for
teleconferencing. Skype was released in 2003 as a
Windows application but today it supports Mac OS and
Linux as well as a wide range of mobile devices. Skype
can be integrated with other applications through a public
APIs that has varied considerably over time. Its Skypekit
allows Internet-connected devices or applications to offer
Skype voice and video calls. However, access to the Skype
developer program (a per-requisite to use the kit) is limited
and the runtime is only available for desktop platforms.
Google Talk was first released by Google in 2005. Users
are required to activate a Google Account, after which
they can start teleconferences from their computers, from
Google+, or from their web-mail account. Unlike other
instant messaging systems, Google Talk uses an open
protocol: The Extensible Messaging and Presence
Protocol (XMPP). In May 2013 Google launched the new
messaging service Google Hangouts.
XMPP is an open-standard communications protocol for
message-oriented middleware based on XML. The
protocol has been developed for near real-time, instant
messaging(IM), presence information, and contact list
maintenance, but it is designed to be extensible. To this
end, XMPP leverages TCP or other transport protocols
(e.g. HTTP) to manage XML streams among remote
clients. Each client is uniquely addressable by an address
called JID. One of the key strengths of XMPP is that,
unlike multi-protocol clients, it provides client

2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)

October 31-November 2, 2013 / Ramada Plaza Jeju Hotel, Jeju, Korea

978-1-4799-1197-4/13/$31.00 ©2013 IEEE

connectivity via special gateway services running
alongside an XMPP server. The result is an highly
decentralized architecture (similar to that of the Simple
Mail Transfer Protocol, SMTP): Everyone can create their
own XMPP server and integrate it with the rest of the
network, thus giving the opportunity for individuals and
organizations to have control over their communications.
Since it was first introduced, back in 1997, tens of
thousands of servers have been activated on the Internet
today, and millions of people use XMPP through public
services such as Google Talk. XMPP supports
authentication and encryption standards. Finally, its use of
XML and the availability of a number of client
implementations makes it easily extensible. It has been
used to support, among others, group chats, network
management applications, collaboration tools, file sharing,
gaming, and also remote systems control and monitoring.

2.2 Related work
There are many example of hobbyist robotic kits featuring
teleconference/telepresence functionalities. Johny Lee’s
low-cost robot [4], for instance, uses a netbook mounted
on top of an iRobot Create platform [5] and the Skype’s
Skype4COM windows-only desktop API [6]. A dedicated
software component on the robot side listens for drive
commands sent over the Internet, by using an additional
communication channel to the one used by Skype, whose
teleconference service is exploited. This type of solutions
results in increased complexity, lower robustness and
potential security problems. Sparky, and the newer Sparky
Jr. projects [7] are open source projects based on a Skype
plug-in, which is used to interact with Skype and to parse
incoming text from the chat with a remote user. Some of
the text, which is recognized and interpreted by the plug-in
as control instructions, is routed to the motor controller
software linked to the robot hardware. The remote user
needs nothing more than the standard Skype client to call
and control the robot. However, the resulting system is
largely dependent on the specific robot API, thus
effectively reducing its portability.
More sophisticated systems have been produced by
industrial and/or research projects. For instance, the
iRobot AVA is a mobile robot base with an extensible
‘neck’ for a head, which is also equipped with a small
LCD screen and two cameras , one for telepresence and
human interaction and another to assist an operator
remotely driving the robot. The system does not use
standard IM or Voip clients, but the remote user can
operate the robot (to move it forward, backward, left and
right), by availing of a graphical user interface (GUI).
Similarly, Giraff [8] is a wheeled mobile robot designed to
facilitate elderly people in their contact with their relatives,
friends, and carers. Giraff is the focal point of two major
EU grants, namely: (I) ExCITE [9], an AAL project that
studies the Giraffe employed in ambient assisted living

(AAL) application in three countries, (ii) and “Giraff+”
[10], a project that explores how the Giraff can be part of a
larger home system that provides increased levels of care
for elderly people as their care needs grow over time.
Giraffe s is based on the operating system Windows XP
Embedded, and it is controlled remotely via the Giraff
Pilot application, which allows remote operators to
generate video calls and to pilot the robot.
The NAO Messenger application [11] is a Google Talk
client for the NAO humanoid robot for Aldebaran [12].
The application uses the Nao to let users know when their
friends are connected in Google Talk. The system, in its
BETA version, is highly dependent from the Nao robot
and does not offer live chat functionalities, as it requires
the user to record a message before sending it to the Nao.
The system that shares more similarities with the one
presented in this paper is [13]. Specifically, the system
implements an architecture for robotic telepresence and
teleoperation based on ROS and Skype. This allows a
remote user to not only interact with people near the robot,
but to view maps, sensory data, robot pose and to issue
commands to the robot’s by using a joystick. ROS
provides a robot with the ability to localize itself and
navigate with respect to a map, so the goal of the project is
to share the robot’s state with the remote user, and to
accept commands from the user that are referenced to the
map, all over Skype. The development is focused on text
chat control using a standard Skype client; and map-based
control using the Skype development environment
(Skypekit).
Integrating Skype with external software is possible but
this raises a technological issue since Skype’s best known
integration tools are for Windows whereas most robot
platforms using ROS run Linux.

3. Toolkit Design
The system described in this paper is designed to address
(i) system portability, in order to support multiple robot
frameworks and easily fit different teleconference
protocols, and (ii) extensibility in terms of use cases, for
instance, to support both chat-based and speech-based
user-robot interaction. Our goal is to give greater
autonomy to the robot in order to allow a wide range of
applications. Contrary to the systems described in the
previous section, which tend to give greater control and
capacity to the user, our system is designed to allow the
robot to leverage its autonomous decision process, to
initiate calls and/or react to user input, for instance, via
speech-based interfaces. The system is designed to be
extensible to new voice inputs and to any new services
offered by the robots it operates with.

To this end, we distinguish between two sub-systems
(see Figure 2), respectively:

Fig. 2. System architecture

1. A robot-end sub-system, installed on the robot,
which handles the interaction between the robot and the
teleconference protocol. Given its advantages over similar
mechanisms, as outlined in the previous section, our
current system is based on XMPP.

2. A user-end sub-system, which handles the
interaction between an external user graphical interface
(GUI) and the XMPP protocol. At both ends, connection
with XMPP is supported thanks to the Smack API [14], a
pure Java library that can be embedded into a Java-based
application to create anything from a full XMPP client to
simple XMPP-based message notification.
At the robot-end, Google Guice [15] is used as a
framework for dependency injection. This is a
programming style in which dependencies between
objects and/or system's components are not rigidly defined
at compilation time (e.g. via explicit references to object
and/or component implementations), but at the time the
application is initialized, when they are “injected” into the
collaborating parts thanks to specific framework
mechanisms. Consequently, the resulting software
systems are better equipped for the support of the
application composition phase where components are
initialized and bound in different ways or re-used for
different application. Google Guice is an open source
software framework for the Java platform released by
Google under the Apache License. It provides support for
dependency injection using annotations to configure Java
objects. For the purpose of our system, the use of a
dependency injection mechanism such as Google Guice
offers the following advantages:

• it improves its re-usability in conjunction with
different robot frameworks;

• it eases unit and integration testing, as it is possible
to inject mock implementations of component's
dependencies
The robot-end sub-system is a Java application composed
of components responsible for the handling of the XMPP
protocol for instant messaging, and components
interacting with the specific robot platform employed in
the application.
The sub-system has been designed according to the
Model-View-Controller (MVC) architectural pattern [16],
which aims to decouple the responsibility of the individual
components, and to separate the part relating to the

application logic, which are handled by the Controller,
from the application status, handled by the Model, and its
presentation, handled by the View. The latter is usually
used to manage user-system interaction through a
graphical user interface (GUI).
We applied the MVC design pattern to our robot-end
sub-system, which does not have a GUI, but that assumes
similar input/output responsibilities for the robot system
and the teleconference protocol. Specifically:
- The Model is based on JavaBeans Java technology and it
is composed by a number of classes that collectively
represent the application domain and the application logic.
This includes, for instance, classes representing a history
of past teleconferences, and contacts of “friends” of the
GoogleTalk account used by the robot. The Model class in
our implementations offers a centralized storage of all the
models defined for a specific application, and provides a
number of utility methods to help managing their life
cycle.
- The View consists of a set of classes, called sub-views,
that are responsible for interacting with the external
environment, processing requests from the user located
with the robot (e.g. via speech-based or other interfaces);
from components internal to the robot (e.g. belonging to
the robot's control system), but also from remote robots or
remote users (through the XMPP protocol). For instance, a
sub-view is used to manage local speech-based input, in
order to receive and process instructions uttered by the
human near the robot, while another sub-view is used to
manage speech synthesis output, in order to give
speech-based feedback. Other sub-views are used to
trigger specific robot services, from basic movements,
such as move left, move right, to more sophisticated
behaviours that may be implemented by the specific robot
framework, such as find user, clean room, etc. While the
majority of the sub-views must be specialized to provide
robot-specific sub-views, we have defined a specific
sub-view, called IMClient to interact with the specific IM
protocol used by the application. Such a sub-view is a
robot-agnostic sub-view that manages the interaction
between the other sub-views and the specific IM protocol,
by listening to incoming IM packets, and by letting other
local sub-views to transmit IM packets to remote users.
- Inputs generated by the sub-views are notified to the
Controller, which implements the control logic. The
Controller is based on the Command design pattern [17]: It
includes a number of Action classes whose methods are
executed when the robot receives specific instructions, and
a Controller class mapping each instruction to its
corresponding action. Once an input is received by the
Controller, this consults and updates the Model before
deciding the proper action that needs to be executed by the
application. Each Action component holds a reference to a
sub-view, whose method it invokes in order to trigger the
achievement of a specific robot's operation.

4. Examples and Tests
As discussed in the previous section, the MVC patterns
allows us to fit different robot technologies by re-using our
implementation of the Controller and the Model, and by

Fig. 3. System for multiple robot platforms and application User-End.

addressing any robot-specific and protocol-specific issue
in the View.
In order to demonstrate how our system can easily support
multiple robot platforms and use cases, we have created
two applications by implementing two distinct
implementations of the sub-view classes defined in our
architecture. Specifically, our examples support: robots
operated via ROS software and Nao humanoid robots.
Both implementations are based on Google Talk, which
supports the XMPP protocol. However, it is sufficient to
modify a parameter in a configuration file provided with
the application, to alternatively use another IM client with
XMPP support. In order to validate the resulting systems,
we have registered a Google Account for each robot.
At the user-end, both application interact with remote
robots (and with the remote users co-located with those
robots) via a standard Google Talk web client, which can
be used to see which robots are online, and to initiate
teleconference calls and/or chat sessions. In addition, we
have developed a Gpilot application that is easily
integrated with the same web browser in which the Google
Talk client operates. The Gpilot is a Java-based GUI that
uses the Smack API to communicate via XMPP with the
robot-side of our application, once a teleconference is
initiated through the Google Talk client. The Smack API
allows us to use the serialization features of the XMPP
protocol, as it provides an easy mechanism for attaching
arbitrary properties to XMPP communication packets.
Each property has a String name, and a value that is a Java
primitive or any Serializable object. In this manner, the
Gpilot can exchange data and instructions with the
robot-side of the system, without having to piggyback on
the standard chat stream, as in some of the systems we
have reviewed in Section 2.2. (see Figure 3)

4.1 ROS Application
In order to support ROS-based systems at the robot-end,
we avail of ROSJava, the first pure Java implementation of
ROS.
In ROS, generally the nodes are synonymous with
processes. In ROSJava, however, nodes runs within a
single process, i.e, the Java VM, from where they can

communicate with any other ROS node (e.g. with the
nodes installed on the robot) through a publish-subscribe
communication pattern mediated by the roscore server.
Our ROS implementation of the robot-end's view is
composed by a number of ROSJava's NodeMain classes,
each encapsulating a ROS node used to specialize a single
sub-view in the architecture outlined in the previous
section.
We have the following ROS-enabled sub-views:

• Sub-view SpeakerROS: Publishes the text to be
uttered by the robot on the topic “speaker”. For the actual
speech synthesis, we rely on the speech and
audio_common packages, two third-party ROS packages
that must be installed on any of the robots operating with
our system. However. in order to decouple our sub-view
from the actual robot system, we also provide a Sound
node, which subscribes to the “speaker” topic, and
executes the appropriate instructions from the underlying
speech synthesis implementation. Different
implementations can be fitted by simply providing a
different version of this node.

• Sub-view ListenerROS: Subscribes to the topic: ”
/recognizer/output”, which must be used by a speech
recognition software to report speech uttered by the local
user to the robot. Specifically, our current implementation
relies on the ROS interface to the pocketsphinx speech
recognition system [18], which must be pre-installed on
the robot. Currently, this feature is used to enable the local
user to interact with Google Talk by uttering basic
instructions, in order to query the list of online friends and
start/stop a teleconference (i.e. “is <contact> online?”,
“Call <contact>”, “Bye”). To this end, we have provided a
short sphinx grammar that models the set of instructions to
be recognized by the system. Finally, the same feature is
also used to transmit the free speech of the local user (as
opposed to specially recognized instructions) via the chat
system.

• Sub-view MoveROS: Publishes the topic "/cmd_vel",
which is a standard topic used to control the velocity of the
robot. Such a functionality is provided as an example to
demonstrate how remote users can be allowed to control
robots via the XMPP protocol. While this example enables

remote users to direct control of the robot platforms using
our systems, more sophisticated control schemes can be
designed by simply extending the View sub-systems, as
discussed in Section 4.3.

4.2 NAO Application
In oder to test our system with the Nao humanoid robot,
we wrote a version of the sub-view classes by using
JNAOqi, the Java interface to the NAOqi SDK [19].
Collectively, the resulting sub-views provide an interface
toward the Nao's behaviour and input/output systems.
Specifically, they allow our system to leverage the built-in
Nao's speech interface capabilities, and also to activate,
configure and deactivate existing Nao's behaviours via
XMPP, by using the proxy classes that are included in the
NAOqi SDK to give direct access to the capabilities of the
Nao.We have the following Nao sub-views:
 • the subview SpeakerNAO implements methods for the
management of the Nao's speech synthesis features, by
using the ALTextToSpeechProxy class.

• the subview ListenerNAO implements methods for
the management of Nao's speech recognition features, by
using the ALSpeechRecognitionProxy class. As for its
ROS-based equivalent, we have provided a grammar to

• the subview MoveNAO implements methods to
interact with the Nao's behaviour system by using the
ALBehaviorManagerProxy class.

4.3 Putting it all together
For both robot frameworks, we have built a number of
demonstrative applications by using a Nao robot and a
ROS-based Turtlebot.
In these applications, a user can ask the robot to know
which of her friends are connected in Google Talk, and
start chatting with them through the robot. The user can
also decide to initiate a mixed chat, by relying on the
robot's speech-recognition capabilities to transmit only the
corresponding text to the remote user, while the remote
user will have her own text uttered by the robot.
Alternatively, a teleconference or a chat session may also
be initiated by the robot, autonomously, on the basis of a
pre-programmed routine, or in response to some event
perceived thanks to its sensors. The robot's control system
can act on the robot-side of our application to initiate a
session with a remote user. Supporting such a use case can
be useful, for instance, to automatically contact the user if
this is outside her own home and something anomalous,
such as an intruder or another emergency, is detected by
the robot, or to inform a relative that an elderly user
requires some form of assistance.
In addition, thanks to the Gpilot GUI, the remote user can
ask the robot to perform simple movements or to activate
simple services, for instance, to move to certain rooms, or
to follow its user, if this is performing some activity while
engaging in a Google Talk conversation.
While our current implementation provides only limited
control of the robot platforms we have used in our tests,
more sophisticated robot services can be easily fitted in
our system. It is enough to extend the Gpilot application
and the MVC pattern used at the robot-side to handle new

control instructions and link them with any of the new
functionalities that may be supported by the robot. Notably,
such links are defined thanks to dependency injection
mechanisms that allow us to drastically reduce the
interventions to our code-base that we need to perform in
order to support new functionalities. Those interventions
are mostly restricted to changes to the configuration file
used to configure the two ends of our application.

4.4 Usage Example
In order to more concretely illustrate the ease of use
afforded by the new toolkit, this section gives more details
on one of the example applications we have implemented.
Specifically, we focus on a security service in which we
have programmed our Nao robot to contact its users
whenever an intruder is detected while they are away from
home. Figure 4 shows part of the code for two new
components that must be implemented to support such a
use case, respectively: (i) a new AlarmNao sub-view with
a IAlarmNao interface, and (ii) its corresponding action
class ActionAlarm, implementing the generic IAction
interface.

Fig. 4. Part of the new subview class supporting the alarm
Nao use case.

The implementation of the alarm method in the
ActionAlarm sub-view is responsible for interacting with
the Nao behaviour framework and to recognize possible
situations that may signal the presence of an intruder, for
instance, by using the Nao's sonar sensors and the Nao's
face recognition capabilities (this part of the code, which is
specific to the Nao robot, is not included in the
pseudo-code showed in Figure 4).
If a possible intruder situation is detected by the Nao, the
AlarmNao class invokes the execution of the ActionAlarm
action. Noticeably, the reference to the controller (the
control variable used in the code) is injected by using the
Google Guice framework and the developer of the
ActionAlarm class is completely shielded by the
implementation details of the alarm action.

Fig. 5. Part of the ActionAlarm class

@Singleton
public class AlarmNAO implements IAlarmNAO {
 @Inject
 private Controller control;

 //implement methods defined in the interface
 public void alarm () {

//use Nao framework to detect intruder
. . .
if(intruderIsDetectd) {
control.getAction(“ActionAlarm”).execute();
}

}
}

@Singleton
public class ActionAlarm implements IAction {
 @Inject
 private Model model;
 //implement methods defined in the interface
 public void execute () {
 String text = “Allarm, Help me!”;
 User user = (User) model.getBean(“User”);

user.sendMessage(text);
}

}

Figure 5 shows part of the code of the ActionAlarm class.
Specifically, it shows how the implementation of its
execute method uses our toolkit to send a message to the
user. The sendMessage(”text”) routine in the User class
allows developers to send a chat message or email through
the XMPP protocol.
Noticeably, in order to implement an equivalent service
for robots based on the ROS framework, such as our
Turtlebot, developers only need to implement an
alternative ROS-based version of the alarm sub-view (e.g.
AlarmROS). Such an implementation will use Turtlebot's
sensors, i.e. its Kinect 3D camera, to monitor for intruders,
but re-use all the other classes already implemented to
support the security service.

5. Conclusion and Future Work
In this paper we have presented an open source toolkit
enabling the seamless integration between robots and
popular Internet-based teleconference systems. Our toolkit
is designed to be as flexible as possible, in order to easily
support multiple use cases, multiple robot platforms and
multiple IM protocols.
Concerning the speech-based interaction, the performance
of our systems relies on the state of the art available on the
platforms we have tested, as well as on the particular
robot's hardware. In particular, while we have run very
successful examples of chat and remote robot control for
both platforms, the Nao's capabilities for speech
recognition are far superior to those we obtained with the
Turtlebot robot. Future work will produce a ROS-based
version that will use the full capabilities of the microphone
array included in the Turtlebot's Kinect sensor.
We also plan to leverage the fact that both ends of our
system are based on Java, to allow seamless integration of
ROSJava components on the user-side. With our
architecture, it should be relatively straightforward to
create a backchannel system, which will use the IM
protocol to initiate calls before letting both sides operate
by exchanging ROS messages directly. In this manner,
new extension to both service and GUI functionalities
may be defined solely on the user-side and will not require
any intervention to the robot-side.
We aim to evaluate the performance of such an approach
in our future work, and also address security and
performance issues likely arising from such a level of
openness.

References

[1] F. Michaud, P. Boissy, H. Corriveau, A. Grant, M.
Lauria, D. Labonte, R. Cloutier, M. Roux, M. Royer,
and D. Iannuzzi, “Telepresence robot for home care
assistance”, in AAAI Spring Symposium on
Multidisciplinary Collaboration for Socially
Assistive Robotics, 2007.

[2] H. Nakanishi, Y. Murakami, D. Nogami, and H.
Ishiguro, “Minimum movement matters: impact of
robot-mounted cameras on social telepresence”, in
Proceedings of the 2008 ACM conference on
Computer supported cooperative work, ser.
CSCW ’08. New York, NY, USA: ACM, 2008, pp.
303–312. [Online]. Available:
http://doi.acm.org/10.1145/1460563.1460614

[3] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. B.
Foote, J. Leibs, R. Wheeler, and A. Y. Ng, "ROS: an
open-source Robot Operating System," in ICRA
workshop on Open-Source Software, 2009.

[4] J. C. Lee. (2011) Low cost video chat robot v2.
[Online].Available:http://procrastineering.blogspot.
com.au/2011/02/low-cost-video-chat-robot.html

[5] (2011) Low cost video chat robot. [Online].
Available: http://youtu.be/9LNS9CivO34

[6] Skype4COM. [Online]. Available:
http://dev.skype.com/accessories/skype4com

[7] (2012) Sparky jr project. [Online]. Available:
http://sparkyjr.ning.com

[8] Giraff. [Online]. Available: http://www.giraff.org
[9] Excite.

 [Online].Available:http://www.oru.se/ExCITE
[10] GiraffPlus [Online]. http://www.giraffplus.eu/
[11] NAO Messenger. [Online].

https://store.aldebaran-robotics.com/product/nao-m
essenger

[12] Aldebarian. [Online].
https://http://www.aldebaran-robotics.com

[13] Peter Corke, Kyran Findlater & Elizabeth Murphy
“Skype : a communications framework for robotics”,
2012

[14] Smack API. [Online].
http://www.igniterealtime.org/projects/smack/index.
jsp

[15] Google Guice. [Online].
https://code.google.com/p/google-guice

[16] Trygve Reenskaug and James O. Coplien. “The DCI
Architecture: A New Vision of Object-Oriented
Programming”, 2009 [Online] Available:
http://www.artima.com/articles/dci_vision.html

[17] Erich Gamma, Richard Helm, Ralph Johnson e John
Vlissides. “Design Patterns: Elements of Reusable
Object- Oriented Software”, Addison Wesley, 1995,
ISBN 88-7192-150-X

[18] Ros-Pocketsphinx-speech-recognition[Online].
Available:https://code.google.com/p/ros-pocketsphi
nx-speech-recognition-tutorial

[19] NAOqi SDK[Online]. Available:
https://community.aldebaran-robotics.com/doc/1-14
/index.html

	Main
	Return

